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Ring-opening of oxazolines derived from LL-serine: a short
and efficient stereoselective synthesis of all four diastereomers

of 3-mercaptoaspartic acid derivatives
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Abstract—Facile methods are described for accessing four diastereomerically pure 3-mercaptoaspartic acid derivative from LL-aspar-
tic acid. In our synthesis, ring-opening reactions of oxazoline-4,5-dicarboxylate with thiolacetic acid as well as the stereochemical
interconversion of both a- and b-configuration via oxazoline chemistry were utilized as key steps.
� 2007 Elsevier Ltd. All rights reserved.
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There is an ever-growing interest in the synthesis and
biological evaluation of non-proteinogenic amino acids,
peptides, and peptidomimetics.1 One particular syn-
thetic interest lies on the b-substituted aspartates, since
their derivatives are found in many biologically active
compounds, both synthetic and natural.2 However,
compared with other b-substituted derivatives such as
b-hydroxy, amino, or alkyl, the synthesis of b-mercap-
toaspartic acid has received little attention.3,4 This is
surprising since a thiol moiety has been extensively
utilized as zinc chelating group in the development of
potent inhibitors for numerous zinc-metalloproteases,
such as angiotensin converting enzyme and matrix
metalloproteinases, which play a crucial role in the acti-
vation or inactivation of regulatory peptides.5,6

General methods for the synthesis of b-amino-a-mer-
capto acids include the electrophilic sulfenylation of
N-protected b-amino esters, which can be available via
the Arndt–Eistert homologation of the corresponding
a-amino acids derivatives.5 Both the Baldwin3 and Ro-
ques6b,c groups reported the stereoselective synthesis of
protected erythro (2R,3R)-3-mercaptoaspartic acid from
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LL-aspartic acid using electrophilic sulfenylation as a key
step. Even though this approach is an efficient way
of preparing b-amino-a-mercapto acids, only erythro
isomers are accessible. It was also demonstrated that
the nucleophilic ring-opening of N-activated trans-
aziridine-2,3-dicarboxylate with alkylthiol afforded the
erythro b-(alkylthio)aspartic acid derivatives.4

2-Oxazolines 1 are versatile building blocks in organic
synthesis, and can be opened in two ways (Fig. 1).
NuOH

retention of configuration at C-5 inversion of configuration at C-5
2 3

Figure 1. 2-Oxazoline: masked b-aminoalcohol or synthetic equivalent
of C-5 cation.
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Firstly, the oxazoline ring can be considered as masked
b-aminoalcohols 2 in the hydrolytic ring-opening, which
does not involve the configurational change at the C-5
position (path a).7 Secondly, oxazolines 1 can be consid-
ered as the synthetic equivalent of a C-5 cation in the
synthesis of substituted amine 3 with inversion of C-5
configuration (path b).8 The stereoselective nucleophilic
ring-opening reactions of oxazoline-5-carboxylates
developed by us has been successfully applied in the syn-
thesis of both syn and anti a-substituted-b-amino acid
derivatives, such as a,b-diamino acids,8,9 phenylisocy-
steins,8,10 and 2 0-mercaptopaclitaxel derivatives.11 Here-
in, we report an efficient stereoselective synthesis of the
unnatural amino acids containing thiol moiety at the
b-position, all four isomers of 3-mercaptoaspartic acid
derivative, from LL-aspartic acid (4) via ring-opening of
oxazoline strategy (Scheme 1).

The key intermediate, trans-(4S,5S)-oxazoline-4,5-dicar-
boxylate 6, was synthesized starting from LL-aspartic acid
(4). Esterification of both a- and b-carboxyl groups of 4
with dry HCl in methanol, followed by benzoylation of
the resulting diester with benzoyl chloride resulted in the
corresponding N-benzoyl diester 5 in 82% yield for the
two steps. Following a known procedure reported by
the Cardillo group,12 N-benzoyl diester 5 was then trea-
ted with 2 equiv of LiHMDS, followed by quenching
with I2, to give trans-(4S,5S)-oxazoline 6 as the exclusive
diastereomer.13 The nucleophilic ring-opening reaction
of trans-(4S,5S)-6 with thiolacetic acid/THF (1:1) at
70 �C for 12 h afforded the desired LL-erythro-(2R,3R)-
HO2C
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Scheme 1.
3-mercaptoaspartic acid derivative 7 in 68% yield with
a clean inversion of configuration at the C-5 position
of the parent oxazoline 6.14 The Campiani group15 re-
cently reported the synthesis of DD-threo-3-hydroxyaspar-
tic acid from its LL-threo-isomer in which inversion of
both the a- and b-configuration was achieved by base-
induced epimerization16 and deoxo-fluor-catalyzed cyli-
zation,17 respectively. Following this route, trans-
(4S,5S)-6 was hydrolyzed under mild acidic condition
to afford LL-threo-3-hydroxyaspartic acid derivative 8,
which in turn was transformed to cis-(4S,5R)-oxazo-
line-4,5-dicarboylate 9 by the treatment of deoxo-fluor
with inversion of the C-5 configuration.13 cis-(4S,5R)-
Oxazoline 6, which is less reactive compared to its
trans-isomer,8–10 was treated with neat thiolacetic acid
at 90 �C for 12 h to provide the desired LL-threo-
(2R,3S)-10 in 88% yield with a clean inversion of config-
uration at the C-5 position of the parent oxazoline 9.14

The remaining two diastereomers with DD-configuration
could be synthesized following the exactly same proce-
dure utilized in the preparation of two LL-diastereomers
starting from DD-aspartic acid. However, as shown in
Scheme 1, the remaining two diastereomers could also
be synthesized via further manipulation of both the 4-
and 5-configuration of oxazoline-4,5-dicarboxylates.15–17

Base-induced epimerization at C-4 configuration led to
the formation of the thermodynamically more stable
trans-(4R,5R)-isomer 11 in trans cis ratio of 95:5 dr,
which was then purified by flash chromatography to give
pure 11 in 77% yield.13 The ring-opening of (4R,5R)-
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trans-isomer with diluted thiolacetic acid afforded DD-
erythro-3-mercaptoaspartic acid derivative 12 in 84%
yield.14 Following the same two-step reaction sequence
from trans-6 to its cis-isomer 9, trans-(4R,5R)-11 was
transformed to cis-(4R,5S)-isomer 13,13 which was then
ring-opened with neat thiolacetic acid to provide the DD-
threo-(2S,3R)-14 in 84% yield.

In conclusion, we have provided a convenient synthetic
access to all four diastereomers of 3-mercaptoaspartic
acid derivative 7, 10, 12, and 14 from LL-aspartic acid.
In our synthesis, ring-opening reactions of oxazoline-
4,5-dicarboxylates with thiolacetic acid as well as the
stereochemical interconversion of a- and b-configura-
tion via oxazoline chemistry were utilized as key steps.
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M.-C. J. Org. Chem. 1997, 62, 4848; (b) David, C.;
Bischoff, L.; Meudal, H.; Mothé, A.; Mota, N. D.;
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