

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 7309–7312

Ring-opening of oxazolines derived from L-serine: a short and efficient stereoselective synthesis of all four diastereomers of 3-mercaptoaspartic acid derivatives

Sang-Hyeup Lee,^{a,b} Juhan Bok,^a Xin Qi,^c Sook Kyung Kim,^c Yoon-Sik Lee^{d,*} and Juyoung Yoon^{c,*}

a Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Republic of Korea b
Department of Life Chemistry, Catholic University of Daegu, Gyeongsan 712-702, Republic ^bDepartment of Life Chemistry, Catholic University of Daegu, Gyeongsan 712-702, Republic of Korea ^cDivision of Nano Sciences (BK21) and Department of Chemistry, Ewha Womans University, Seoul 120-750, Republic of Korea ^d School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Republic of Korea

> Received 5 July 2007; revised 8 August 2007; accepted 10 August 2007 Available online 15 August 2007

Abstract—Facile methods are described for accessing four diastereomerically pure 3-mercaptoaspartic acid derivative from L-aspartic acid. In our synthesis, ring-opening reactions of oxazoline-4,5-dicarboxylate with thiolacetic acid as well as the stereochemical interconversion of both α - and β -configuration via oxazoline chemistry were utilized as key steps. © 2007 Elsevier Ltd. All rights reserved.

There is an ever-growing interest in the synthesis and biological evaluation of non-proteinogenic amino acids, peptides, and peptidomimetics.[1](#page-2-0) One particular synthetic interest lies on the β -substituted aspartates, since their derivatives are found in many biologically active compounds, both synthetic and natural.[2](#page-2-0) However, compared with other β -substituted derivatives such as β -hydroxy, amino, or alkyl, the synthesis of β -mercap-toaspartic acid has received little attention.^{[3,4](#page-2-0)} This is surprising since a thiol moiety has been extensively utilized as zinc chelating group in the development of potent inhibitors for numerous zinc-metalloproteases, such as angiotensin converting enzyme and matrix metalloproteinases, which play a crucial role in the activation or inactivation of regulatory peptides. $5,6$

General methods for the synthesis of β -amino- α -mercapto acids include the electrophilic sulfenylation of N-protected β -amino esters, which can be available via the Arndt–Eistert homologation of the corresponding α -amino acids derivatives.^{[5](#page-2-0)} Both the Baldwin^{[3](#page-2-0)} and Roques^{6b,c} groups reported the stereoselective synthesis of protected erythro (2R,3R)-3-mercaptoaspartic acid from

L-aspartic acid using electrophilic sulfenylation as a key step. Even though this approach is an efficient way of preparing β -amino- α -mercapto acids, only *erythro* isomers are accessible. It was also demonstrated that the nucleophilic ring-opening of N-activated transaziridine-2,3-dicarboxylate with alkylthiol afforded the erythro β -(alkylthio)aspartic acid derivatives.^{[4](#page-2-0)}

2-Oxazolines 1 are versatile building blocks in organic synthesis, and can be opened in two ways (Fig. 1).

Figure 1. 2-Oxazoline: masked β -aminoalcohol or synthetic equivalent of C-5 cation.

^{*} Corresponding authors. Tel.: +82 2 880 7073; fax: +82 2 880 1604 (Y.-S.L.); tel.: +82 2 3277 2400; fax: +82 2 3277 2384 (J.Y.); e-mail addresses: yslee@snu.ac.kr; jyoon@ewha.ac.kr

^{0040-4039/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.08.041

Firstly, the oxazoline ring can be considered as masked β -aminoalcohols 2 in the hydrolytic ring-opening, which does not involve the configurational change at the C-5 position (path a).[7](#page-2-0) Secondly, oxazolines 1 can be considered as the synthetic equivalent of a C-5 cation in the synthesis of substituted amine 3 with inversion of C-5 configuration (path b). 8 The stereoselective nucleophilic ring-opening reactions of oxazoline-5-carboxylates developed by us has been successfully applied in the synthesis of both syn and anti α -substituted- β -amino acid derivatives, such as α , β -diamino acids, 8.9 phenylisocysteins, $8,10$ and 2'-mercaptopaclitaxel derivatives.^{[11](#page-2-0)} Herein, we report an efficient stereoselective synthesis of the unnatural amino acids containing thiol moiety at the b-position, all four isomers of 3-mercaptoaspartic acid derivative, from L-aspartic acid (4) via ring-opening of oxazoline strategy (Scheme 1).

The key intermediate, trans-(4S,5S)-oxazoline-4,5-dicarboxylate 6, was synthesized starting from L-aspartic acid (4). Esterification of both α - and β -carboxyl groups of 4 with dry HCl in methanol, followed by benzoylation of the resulting diester with benzoyl chloride resulted in the corresponding N-benzoyl diester 5 in 82% yield for the two steps. Following a known procedure reported by the Cardillo group,^{[12](#page-2-0)} N-benzoyl diester 5 was then treated with 2 equiv of LiHMDS, followed by quenching with I_2 , to give trans-(4S,5S)-oxazoline 6 as the exclusive diastereomer[.13](#page-2-0) The nucleophilic ring-opening reaction of trans-(4S,5S)-6 with thiolacetic acid/THF $(1:1)$ at 70 °C for 12 h afforded the desired L-erythro- $(2R,3R)$ -

3-mercaptoaspartic acid derivative 7 in 68% yield with a clean inversion of configuration at the C-5 position of the parent oxazoline 6^{14} 6^{14} 6^{14} . The Campiani group^{[15](#page-3-0)} recently reported the synthesis of D-threo-3-hydroxyaspartic acid from its L-threo-isomer in which inversion of both the α - and β -configuration was achieved by base-induced epimerization^{[16](#page-3-0)} and deoxo-fluor-catalyzed cyli-zation,^{[17](#page-3-0)} respectively. Following this route, *trans*-(4S,5S)-6 was hydrolyzed under mild acidic condition to afford L-threo-3-hydroxyaspartic acid derivative 8, which in turn was transformed to $cis-(4S,5R)$ -oxazoline-4,5-dicarboylate 9 by the treatment of deoxo-fluor with inversion of the C-5 configuration.^{[13](#page-2-0)} cis- $(4S,5R)$ -Oxazoline 6, which is less reactive compared to its *trans*-isomer, $8-10$ was treated with neat thiolacetic acid at 90° C for 12 h to provide the desired L-threo- $(2R,3S)$ -10 in 88% yield with a clean inversion of configuration at the C-5 position of the parent oxazoline 9 .^{[14](#page-3-0)}

The remaining two diastereomers with D-configuration could be synthesized following the exactly same procedure utilized in the preparation of two L-diastereomers starting from D-aspartic acid. However, as shown in Scheme 1, the remaining two diastereomers could also be synthesized via further manipulation of both the 4 and 5-configuration of oxazoline-4,5-dicarboxylates.¹⁵⁻¹⁷ Base-induced epimerization at C-4 configuration led to the formation of the thermodynamically more stable $trans-(4R,5R)$ -isomer 11 in trans cis ratio of 95:5 dr, which was then purified by flash chromatography to give pure 11 in 77% yield.^{[13](#page-2-0)} The ring-opening of $(4R,5R)$ -

trans-isomer with diluted thiolacetic acid afforded Derythro-3-mercaptoaspartic acid derivative 12 in 84% yield[.14](#page-3-0) Following the same two-step reaction sequence from trans-6 to its cis-isomer 9, $trans-(4R,5R)$ -11 was transformed to cis -(4R,5S)-isomer 13,¹³ which was then ring-opened with neat thiolacetic acid to provide the D*threo-(2S,3R)-14* in 84% yield.

In conclusion, we have provided a convenient synthetic access to all four diastereomers of 3-mercaptoaspartic acid derivative 7, 10, 12, and 14 from L-aspartic acid. In our synthesis, ring-opening reactions of oxazoline-4,5-dicarboxylates with thiolacetic acid as well as the stereochemical interconversion of α - and β -configuration via oxazoline chemistry were utilized as key steps.

Acknowledgments

This work was supported by the SRC program of the Korea Science and Engineering Foundation (KOSEF) (R11-2005-008-02001-0), the Korea Research Foundation Grant (KRF-2004-005-C00093) and the research grant from KRIBB Research Initiative Program, Korea.

Supplementary data

¹H and ¹³C spectra for the compounds $5-14$. Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/j.tetlet.2007.08.041.](http://dx.doi.org/10.1016/j.tetlet.2007.08.041)

References and notes

- 1. (a) For some recent reviews, see: Chan, W. C., Higton, A., Davies, J. S. In Amino Acids, Peptides and Proteins, 2006; pp 1–73; (b) Ager, D. J.; Fotheringham, I. G. Curr. Opin. Drug Discov. Dev. 2001, 4, 800; (c) Asymmetric Synthesis of Novel Sterically Constrained Amino Acids; Symposiumin-Print, Hruby, V. J., Soloshonok, V. A. Eds., Tetrahedron 2001, Vol. 57, p 6329 and references cited therein; (d) Lee, K.-H. Curr. Pharm. Des. 2002, 8, 795; (e) Bouifraden, S.; Drouot, C.; El Hadrami, M.; Guenoun, F.; Lecointe, L.; Mai, N.; Paris, M.; Pothion, C.; Sadoune, M.; Sauvagnat, B.; Amblard, M.; Aubagnac, J. L.; Calmes, M.; Chevallet, P.; Daunis, J.; Enjalbal, C.; Fehrentz, J. A.; Lamaty, F.; Lavergne, J. P.; Lazaro, R.; Rolland, V.; Roumestant, M. L.; Viallefont, P.; Vidal, Y.; Martinez, J. Amino Acids 1999, 16, 345; (f) Ohfune, Y. Acc. Chem. Res. 1992, 25, 360.
- 2. (a) Fernandez-Megia, E.; Paz, M. M.; Sardina, F. J. J. Org. Chem. 1994, 59, 7643, and references cited therein; (b) Charvillon, F. B.; Amouroux, R. Synth. Commun. 1997, 27, 395.
- 3. (a) Shibata, N.; Baldwin, J. E.; Jacobs, A.; Wood, W. E. Tetrahedron 1996, 52, 12839–12852; (b) Shibata, N.; Baldwin, J. E.; Jacobs, A.; Wood, W. E. Synlett 1996, 1996, 519.
- 4. Antolini, L.; Bucciarelli, M.; Caselli, E.; Davoli, P.; Forni, A.; Moretti, I.; Prati, F.; Torre, G. J. Org. Chem. 1997, 62, 8784.
- 5. Gordon, E. M.; Godfrey, J. D.; Delaney, N. G.; Asaad, M. M.; Langen, D. V.; Cushman, D. W. J. Med. Chem. 1988, 31, 2199.
- 6. For some recent examples, see: (a) Bischoff, L.; David, C.; Martin, L.; Meudal, H.; Roques, B. P.; Fournié-Zaluski, M.-C. J. Org. Chem. 1997, 62, 4848; (b) David, C.; Bischoff, L.; Meudal, H.; Mothé, A.; Mota, N. D.; DaNascimento, S.; Llorens-Cortès, C.; Fournié-Zaluski, M.-C.; Roques, B. P. J. Med. Chem. 1999, 42, 5197; (c) David, C.; Bischoff, L.; Roques, B. P.; Fournié-Zaluski, M.-C. Tetrahedron 2000, 56, 209; (d) Martin, L.; Cornille, F.; Coric, P.; Roques, B. P.; Fournié-Zaluski, M.-C. J. Med. Chem. 1998, 41, 3450; (e) Gaucher, J. F.; Selkti, M.; Tiraboschi, G.; Prangé, T.; Roques, B. P.; Tomas, A.; Fournie´-Zaluski, M.-C. Biochemistry 1999, 38, 12569; (f) Robl, J. A.; Sulsky, R.; Sieber-McMaster, E.; Ryono, D. E.; Cimarusti, M. P.; Simpkins, L. M.; Karanewsky, D. S.; Chao, S.; Asaad, M. M.; Seymour, A. A.; Fox, M.; Smith, P. L.; Trippodo, N. C. J. Med. Chem. 1999, 42, 305; (g) Baxter, A. D.; Bhogal, R.; Bird, J. B.; Buckley, G. M.; Gregory, D. S.; Hedger, P. C.; Manallack, D. T.; Massil, T.; Minton, K. J.; Montana, J. G.; Neidle, S.; Owen, D. A.; Watson, R. J. Bioorg. Med. Chem. Lett. 1997, 7, 2765; (h) Akasaka, K.; Akamatsu, H.; Kimoto, Y.; Komatsu, Y.; Shimizu, T.; Shimomura, N.; Tagami, K.; Negi, S. Chem. Pharm. Bull. 1999, 47, 1525; (i) Akasaka, K.; Komatsu, Y.; Tagami, K.; Shimizu, T.; Shimomura, N.; Naka, H.; Hayashi, K.; Negi, S. Chem. Pharm. Bull. 1999, 47, 1532; (j) Blommaert, A.; Turcaud, S.; Anne, C.; Roques, B. P. Bioorg. Med. Chem. Lett. 2004, 12, 3055; (k) Sukonpan, C.; Oost, T.; Goodnough, M.; Tepp, W.; Johnson, E. A.; Rich, D. H. J. Pept. Res. 2004, 63, 181.
- 7. For some recent examples, see: (a) Cardillo, G.; Glentilucci, L.; Tolomelli, A. Aldrichim. Acta 2003, 36, 39, and references cited therein; (b) Feske, B. D.; Kaluzna, I. A.; Stewart, J. D. J. Org. Chem. 2005, 70, 9654; (c) Voronkov, M. V.; Gontcharov, A. V.; Wang, Z.-M.; Richardson, P. F.; Kolb, H. C. Tetrahedron 2004, 60, 9043; (d) García Ruano, J. L.; García Paredes, C. Tetrahedron Lett. 2000, 41, 5357.
- 8. Lee, S.-H.; Yoon, J.; Nakamura, K.; Lee, Y.-S. Org. Lett. 2000, 2, 1243.
- 9. Lee, S.-H.; Yoon, J.; Chung, S.-H.; Lee, Y.-S. Tetrahedron 2001, 57, 2139.
- 10. Lee, S.-H.; Qi, X.; Yoon, J.; Nakamura, K.; Lee, Y.-S. Tetrahedron 2002, 58, 2777.
- 11. (a) Qi, X.; Lee, S.-H.; Yoon, J.; Lee, Y.-S. Tetrahedron 2003, 59, 7409; (b) Qi, X.; Lee, S.-H.; Yoon, J.; Lee, Y.-S. Tetrahedron 2004, 60, 3599; (c) Qi, X.; Lee, S.-H.; Yoon, J.; Lee, Y.-S. Tetrahedron 2004, 60, 4133.
- 12. Cardillo, G.; Gentilucci, L.; Tolomelli, A.; Tomasini, C. Synlett 1999, 1727.
- 13. The 1 H, 13 C NMR, and HRMS spectra of trans-oxazolines were consistent with the data reported previously.¹² Optical purity was verified by an optical rotation analysis, which was compared to the reported values $\{\alpha\}_{\text{D}} +45.1$ (c 1, CHCl₃) for $(4S, 5S)$ -6; -46.9 (c 1, CHCl₃) for $(4R, 5R)$ -11; lit.^{12,15} +42.2 (c 1.2, CHCl₃) and 41.8 (c 0.8, CHCl₃) for $(4S, 5S)$ -isomer; -42.6 (c 1, CHCl₃) for $(4R, 5R)$ isomer}. The spectral data of the cis-oxazolines show a distinct difference compared to their *trans*-isomers. $(4S,5R)$ -9: $[\alpha]_D$ +178.5 (c 1, CHCl₃); mp 80–82 °C; ¹H NMR (CDCl₃, 300 MHz) δ 3.77 (s, 3H), 3.79 (s, 3H), 5.24 $(d, J = 10.5 \text{ Hz}, 1\text{H}), 5.30 (d, J = 11.1 \text{ Hz}, 1\text{H}), 7.38-7.58$ (m, 3H), 7.96–8.08 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 52.66, 52.75, 72.15, 78.17, 126.16, 128.41, 128.83, 132.28, 166.19, 168.53, 169.36; HRMS (FAB) $m/z = 264.0868$ $(M+H)^+$, Calcd for C₁₃H₁₄N₁O₅ = 264.0872. (4R,5S)-13

shows same spectral data and optical rotation with opposite sign compared with (4S,5R)-9.

- 14. L-erythro-(2R,3R)-7: $[\alpha]_D$ +60.7; mp 73–75 °C; ¹H NMR (CDCl₃, 300 MHz) δ 2.39 (s, 3H), 3.79 (s, 3H), 3.80 (s, 3H), 5.07 (d, $J = 3.7$ Hz, 1H), 5.37 (dd, $J = 3.7$, 9.3 Hz, 1H), 7.27 (br d, $J = 9.3$ Hz, 1H), 7.40–7.60 (m, 3H), 7.75– 7.90 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 30.05, 46.85, 53.05, 53.23, 53.38, 127.19, 128.61, 131.97, 133.44, 167.38, 169.66, 170.85, 192.21; HRMS (FAB) $m/z = 340.0849$ $(M+H)^{+}$, Calcd for $C_{15}H_{18}N_1O_6S_1 = 340.0855$. D-erythro-(2S,3S)-12 shows same spectral data and optical rotation with opposite sign compared with L-erythro-7. L-Threo- $(2R,3S)$ -10: $[\alpha]_D$ +11.3; mp 160–162 °C; ¹H NMR (CDCl₃, 300 MHz) d 2.38 (s, 3H), 3.78 (s, 3H), 3.79 (s, 3H), 4.86 (d, $J = 4.2$ Hz, 1H), 5.38 (dd, $J = 4.2$, 8.7 Hz, 1H), 6.98 (br d, $J = 8.7$ Hz, 1H), 7.40–7.58 (m, 3H), 7.74–7.84 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ 30.02, 47.73, 53.13, 53.39, 53.84, 127.19, 128.65, 132.06, 133.24, 166.80, 169.62, 169.97, 192.92; HRMS (FAB) $m/z = 340.0860$ (M+H) Calcd for $C_{15}H_{18}N_1O_6S_1 = 340.0855$. D-threo-(2S,3R)-14 shows same spectral data and optical rotation with opposite sign compared with L-threo-10.
- 15. De Angelis, M.; Campiani, G. Tetrahedron Lett. 2004, 45, 2355.
- 16. (a) Suga, H.; Ikai, K.; Ibata, T. J. Org. Chem. 1999, 64, 7040; (b) Suga, H.; Ikai, K.; Ibata, T. Tetrahedron Lett.

1998, 39, 869; (c) Evans, D. A.; Janey, J. M.; Magomedov, N.; Tedrow, J. S. Angew. Chem., Int. Ed. 2001, 40, 1884.

17. Stereochemical interconversion of vicinal aminoalochols via the formation of intermediate oxazoline is well documented. For examples, of β -amino- α -hydroxy esters accompanying C-a inversion via oxazoline-5-carboxylates, see: (a) Sakakura, A.; Kondo, R.; Ishihara, K. Org. Lett. 2005, 7, 1971, and references cited therein; (b) Singh, O. V.; Han, H. Tetrahedron Lett. 2003, 44, 5289; (c) Phillips, A. J.; Uto, Y.; Wipf, P.; Reno, M. J.; Williams, D. R. Org. Lett. 2000, 2, 1165, and references cited therein; For examples of β -hydroxy- α -amino esters accompanying C- β inversion via oxazoline-4-carboxylates, see: (d) Tosaki, S. y.; Tsuji, R.; Ohshima, T.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 2147; (e) Castagnolo, D.; Armaroli, S.; Corelli, F.; Botta, M. Tetrahedron: Asymmetry 2004, 15, 941; (f) Hamamoto, H.; Mamedov, V. A.; Kitamoto, M.; Hayashi, N.; Tsuboi, S. Tetrahedron: Asymmetry 2000, 4485; (g) Lee, J.-M.; Lim, H.-S.; Seo, K.-C.; Chung, S.-K. Tetrahedron: Asymmetry 2003, 14, 3639; (h) Gou, D.-M.; Liu, Y.-C.; Chen, C.-S. J. Org. Chem. 1993, 58, 1287; An analogous stereochemical interconversion of 1,3-aminoalcohols via the formation of intermediate oxazines, see: (i) Singh, O. V.; Kampf, D. J.; Han, H. Tetrahedron Lett. 2004, 45, 7239.